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The palladium-catalyzed reaction of aryl halides with alkali metal Table 1. Reactions of Reformatsky Reagents with Bromoarenes
enolates has become a convenient synthetic méttfo@hese Bearing Potentially Reactive Functional Groups
procedures are simple to conduct, but a number of drawbacks result ; o Pd icand o o Q-phos= ?P(I-Bu)z
. . o . . R igan R =H, Me Ph
from the basic reaction conditions. Reactions of substrates bearing XR2 ——— j)j\xaz XR2=0-tBu, NEt, Pth

nitro, cyano, carboxyl, and keto groups, which react with strong  ZnBr-THF 14 cﬁrgi{:xane Ar Ph "
bases and nucleophiles, occurred in low yield. Also, coupling at Entry ArBr R' XR? Cond.”Temp. Time Yield”
the more hindered of two enolizable positions was not possible. ; Rsooc—er Ri-MeMe O-tBu 4 RT 4n &7
Moreover, the basic conditions limit control of stereochemistry. 3 RO=Et ﬂe mgz g RT &h ik
Products with new tertiary stereocenters would be racemized s 1 RPh  H OtBu Ab RT  4h 72%
because of the greater acidity of the product, and substrates with 6 R R=Ph  Me O-tBu A  70°C 4h 89%
auxiliary, base-sensitive stereocenters can undergo racemization. 4 , Bt H OtBu A RT an ee%
Finally, the strong base required to generate amide enolates has  § 7N\ g ;‘:ﬁg; Bt A BT 4h
limited the scope of the coupling of amides even with unfunction- 10 ONi= 4NO, Me NEt, C RT  6h 97%
alized bromoarencs® B, 33 f g omroan o
We report two procedures for the-arylation of carbonyl }3 NCQ_ Br 58“ Me 85'15” é” g;f gn gg;
compounds under co_ndltlons_ that are more neutral than thos_e for 15 /\ 4OH H OtBu D RT 4h 9i%
reactions of aryl halides with alkali metal enolates. The first 1; o< Br g:gz Me 8:;:@3 B g}f 22 ggo//e
procedure involves the use of zinc enolates and rests upon the 8 H oOtBu D AT 24h 8%
development of catalysts bearing the hindered pentaphenylferrocenyl 19 H2N—©—Br Me O-+Bu B° RT 12h 70%
di-tert-butylphosphine (Q-phos§ and the highly reactive dimeric 20 Me O-tBu D RTO 24h 66:°
Pd(l) complex{ P(-Bu)s]PdBr},.° Previous studies on the cross- g% N/’_\\ g:g: S 8153 ﬁ ;g°g 32 ;84:
coupling of zinc enolates included reactions of only acetate enolates 2 =""8r 8B Me OtBu A 70°C 4h 91%
with a small set of aryl halides in modest yields!® The second 2 BufO-Br Mo Ne2 & BT gh 9%
procedure involves palladium-catalyzed reactions of silyl ketene
and silyl ketimine acetals in the presence of zinc fluoride cocatalyst. gg Moo //__\ Br g:gm: FMie ngz 8 g; gg g;j;:
Previous palladium-catalyzed couplings of these enolates with aryl 8 © H NE‘: ¢ RT 6h 91%
halides were conducted with tin fluoride additives to generate the 29 Fac_@'B' Me NEt;, C RT 6h 88%
tin enolate¥*~18 or with suprastoichiometric amounts of both enolate
and copper fluoride additiv¥. Tin halides generate toxic byprod- a Standard conditions: (A) 1 mol % Pd(dbal mol % PRFcP¢-Bu),,

ucts, and an excess of copper complicates product separation. Thesé-1 quu“{l'l?if;nglatze’ T|I'|OF;; I(3‘3)(?-5 mol ‘;{’ij(tl-jBl'J:)B]gdgf}zy 112 equiv 0;

previous reports included only acetate enolates. T ) e s s o
Palladium catalysts bearing hindered alkyl phosphines catalyzedequiv of enolate, THF? 2 mol % Pd(dba)and Q-phos were usedl2 equiv

the coupling of Reformatsky reagents prepared from activated zinc of enolatef Yields are for pure isolated material and are an average of

anda-bromo esters with a wide variety of base-sensitive substrates, WO runs.

as summarized in Table 1. The chemistry with Reformatsky reagentsfunctionality (entries 1520) also occurred if 2 equiv of the

in Table 1 was conducted in the presence of 1 or 2 mol % of a Reformatsky reagent was added or if 1 equiv of KH was added

combination of Pd(dba)and Q-phos or 0.5 mol %P({-Bu)]- before the Reformatsky reagent. For example, most combinations

PdB#},. In most cases, both catalysts provided good yields, but, of the two enolates and 2- or 4-bromophenol and 4-bromoaniline

with the exception of aryl halides with acidic protons, the catalyst formed thea-aryl ester in high yield. In contrast to the reactions

with Q-phos created a more general process. The broad scope andf alkali metal ester enolat@&2! no products from diarylation of

high yields were not obtained with triarylphosphine catalyts. zinc acetate or propionate enolates were observed.

Our study on the coupling of zinc ester enolates focused on the Reactions of halopyridines also did not forrrheteroaryl esters
reactions of aryl and heteroaryl halides that did not undergo in previous work with lithium enolates of acetates or propi-
palladium-catalyzed couplings with alkali metal enol&6%.For onateg%21 However, reaction of the corresponding zinc enolates
example, bromonitrobenzenes, bromobenzonitriles, aryl halides with with bromopyridines generated the products in high yields in several
enolizable hydrogens, and aryl halides of electrophilic ketones did cases (entries 2123). The Reformatsky reagentteft-butyl acetate
not undergo palladium-catalyzed coupling with lithium acetate or reacted with both 3- and 4-bromopyridine in high yield. Moreover,
propionate enolates. However, coupling of these aryl bromides with the zinc enolate ofert-butylpropionate coupled with 3-bromopy-
the Reformatsky reagent trt-butyl acetate or propionate occurred ridine in high yield.
in high yield at room temperature (entries 1, 2;% 11-13). To test if the less basic conditions improved the scope and yields
Reactions of zinc enolates with aryl halides bearing protic for the a-arylation of the amides, we conducted reactions of the
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Table 2. Coupling of Silyl Ketene Acetals with Bromoarenes
‘ o}
Rl OTMS 1% Pd(dba),, 2% P(t-Bu)s A ,
mé OR? 05 equiv ZnF, AiBr,DMF,80C, 12h 5 OR
R'=H, R%=t-Bu; R'=Me, R?>=Me
ArBr R' yield? ArBr R' yield?
CN Br Br
1 0 H e7% 8 veo /©/ Me 88%
2 BrR=OMe H 80% o Bl e 98%
3 R=OMe Me 94% 9 Me g%
4R R=Me H  68% NO. o
5 R=Me Me 78% 2 Br
| 10/
6 0 . RPh  Me 99% /©/ Mo 95%
r H  75% ©Fs Br
7 12 Me 91%
CN

aYields are for pure isolated material and are an average of two runs.

Reformatsky reagents generated frarbromodiethylacetamide and
a-bromodiethylpropionamide with bromoarenes. Indeed, coupling
occurred with broad scope at room temperature (Table 1, entries
3,4, 10, 14, 2429). The reaction scope encompassed aryl halides,
such as 4-bromobenzotrifluoride, 4-bromobenzonitrile, and the
electron-rich bromoanisole, that failed to react in high yield with
potassium amide enolates in the presence of palladium and BINAP.
The zinc enolates formed none of the diarylation product that
reduced yields of reactions of potassium enolates.

Alkali metal enolates of propionamides reacted in low yields
with all aryl halides in published wobkconducted with palladium
catalysts bearing monodentate or bidentate ligands. However,
coupling of the zinc enolate generated fraxbromodiethylpro-
pionamide occurred in high yield at room temperature with a variety
of aryl bromides, including those with electron-donating or
potentially reactive, base-sensitive electron-withdrawing groups.

The second protocol resulted from conditions that improve the
rate of transmetalation of silyl enolate without use of toxic tin

Scheme 1
0 o 0 o
19 ) 1 j’l’f paava), A I O)LNJH/
QNN o N PEBUs R T L
/o / ZnF, PhBr P
Bn /— 80[')\4% /  88:12 /
1 (>90% de) 67% isolated +1 (>90% de)

or epi-1, the a-aryl epimer (>90% de) or epi-1 (>90% de)

isomer. To determine if the more neutral conditions generated a
kinetic ratio of diastereomers, we conducted the arylation of the
silyl enolate of one imide in the presence of a diastereomerically
pure a-aryl imide 1 and its epimer at thew-aryl position epi-1
(Scheme 1). This reaction formed the same ratio of diastereomers
as the reaction conducted without addeéhryl amide, and the
stereochemistry of the added imides remained unaltered. Thus, the
conditions for thex-arylation of the silyl enolates are neutral enough
to prevent silyl group migration and epimerization of base-sensitive
stereocenters.

In summary, two advances in catalyst and reaction design have
significantly expanded the scope of thearylation of carbonyl
compounds. Highly reactive catalysts based on Q-phos or Pd(l)
dimers, in combination with zinc enolates or silicon enolates with
ZnF, additive, allow the preparation af-aryl esters and amides
from substrates that bear functionality or stereochemistry that is
sensitive to the basicity or nucleophilicity of alkali metal enolates.
Further studies that exploit the broad scope and lack of racemization
are in progress.
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